
DRAFT David A. Cooper May 14, 1999

- 1 - DRAFT

X.509 InhibitPolicyMapping Processing

The Problem

Currently, when the inhibitPolicyMapping extension is included in a certificate or the initial-policy-
mapping-indicator is set by the relying party, all policy mapping is turned off. The result of the current
certificate policy processing rules (with respect to the inhibitPolicyMapping extension) is to cause some
paths to be rejected even though some relying parties would like to validate such paths. This problem
occurs whether using the current certificate policy processing rules, the rules suggested by Santosh
Chokhani, Serge Mister, and Tim Moses (see http://csrc.nist.gov/pki/twg/presentations/twg-99-31.pdf), or
the rules suggested by Sarbari Gupta (see http://csrc.nist.gov/pki/twg/presentations/twg-99-32.pdf).

In order to illustrate the problem with the processing of the inhibitPolicyMapping extension, we will use
the following example. The US BCA wishes to cross-certify with the Canadian BCA. Relying parties
within the US wish to be able to validate certification paths to Canadian certificate subjects, even if they
happen to have been issued a certificate under a different policy than the one used by the Canadian BCA.
At the same time, paths from the Canadian BCA to non-Canadian certificate subjects should not validate
for US relying parties.

In the figure below, the Canadian BCA has issued two certificates, one to the Canadian DND and one to the
Cuban BCA. The Canadian BCA issues each certificate under the policy CanadaHigh and then uses policy
mapping to map CanadaHigh to the appropriate policy for the domain of the subject of the certificate. In
each case the Canadian BCA relies on policy mapping to allow Canadian relying parties to validate paths
within Cuba and the Canadian DND.

The figure below also includes a certificate issued by the US BCA to the Canadian BCA. In order to
prevent US relying parties from validating paths that lead outside of Canada, the US BCA turns off policy
mapping.

We will now describe the results of certificate path processing on the certificate path beginning with the US
BCA and ending with the certificate issued to John Doe when either the current rules are used or when the
rules suggested by Santosh Chokhani, Serge Mister, and Tim Moses are used. In both cases, we will
assume that all certificate policy extensions are critical and that initial-policy-set is any-policy.

Current rules: Under the current rules, authority-constrained-policy-set will initially be any-policy.
After processing the US BCA certificate, authority-constrained-policy-set will become
{USHigh, CanadaHigh, CanadaDNDHigh}. When processing the Canadian BCA

issuer = Canadian BCA

subject = Cuban BCA

certificatePolicies = {CanadaHigh}

policyMappings :

 CanadaHigh = CubaHigh

inhibitPolicyMapping , SkipCerts =0

issuer = US BCA

subject = Canadian BCA

certificatePolicies = {USHigh}

policyMappings :

 USHigh = CanadaHigh

 USHigh = CanadaDNDHigh

inhibitPolicyMapping , SkipCerts =0

issuer = Canadian BCA

subject = Canadian DND

certificatePolicies = {CanadaHigh}

policyMappings :

 CanadaHigh = CanadaDNDHigh

issuer = Canadian DND

subject = John Doe

certificatePolicies = {CanadaDNDHigh}

DRAFT David A. Cooper May 14, 1999

- 2 - DRAFT

certificate, authority-constrained-policy-set will be set to the intersection of its current
value and the value in certificatePolicies , {CanadaHigh}. Since the US BCA included
the inhibitPolicyMapping extension, the value of authority-constrained-policy-set will
still be {CanadaHigh} when processing of the Canadian BCA certificate is complete.
When processing the certificate issued to John Doe, the intersection of authority-
constrained-policy-set and certificatePolicies will be the empty set and so the certificate
will be rejected.

New Rules: Under the rules proposed by Santosh Chokhani, Serge Mister, and Tim Moses, authority-
constrained-policy-set will initially be any-policy. After processing the US BCA
certificate, authority-constrained-policy-set will become {CanadaHigh,
CanadaDNDHigh}. When processing the Canadian BCA certificate, authority-
constrained-policy-set will be set to the intersection of its current value and the value in
certificatePolicies , {CanadaHigh}. Since the US BCA included the
inhibitPolicyMapping extension, the processing of the policyMapping extension will
result in CanadaHigh being deleted from authority-constrained-policy-set with the result
being that authority-constrained-policy-set becomes the empty set. After processing the
certificate issued to John Doe, the certificate path will be rejected since authority-
constrained-policy-set is empty.

A similar problem occurs when using the certificate policy processing rules proposed by Sarbari Gupta,
however, in order to demonstrate this a slightly different set of certificates will need to be used. In the
figure below, the US BCA has issued a certificate to Canadian BCA1, which issues a certificate under the
policy CanadaHigh to Canadian BCA2. By using the permittedPolicies extension, Canadian BCA1
restricts the certificates that can be validated to those that assert CanadaHigh and to those that assert a
policy that is at some point mapped to CanadaHigh using the policyMappings extension. Since Canadian
BCA2 asserts that CanadaDNDHigh is equivalent to CanadaHigh, Canadian relying parties, whose
certificate paths include Canadian BCA1 and Canadian BCA2 can validate the certificate issued to John
Doe.

A different result occurs when a US relying party attempts to validate the certificate issued to John Doe. As
above, we will assume that initial-policy-set is set to any-policy. After processing the US BCA certificate,

issuer = Canadian BCA1

subject = Cuban BCA

certificatePolicies = {CanadaHigh}

policyMappings :

 CanadaHigh = CubaHigh

permittedPolicies = {CubaHigh}

inhibitPolicyMapping , SkipCerts =0

issuer = US BCA

subject = Canadian BCA1

certificatePolicies = {USHigh}

policyMappings :

 USHigh = CanadaHigh

 USHigh = CanadaDNDHigh

permittedPolicies = {CanadaHigh,

 CanadaDNDHigh}

inhibitPolicyMapping , SkipCerts =0

issuer = Canadian BCA2

subject = Canadian DND

certificatePolicies = {CanadaHigh}

policyMappings :

 CanadaHigh = CanadaDNDHigh

issuer = Canadian DND

subject = John Doe

certificatePolicies = {CanadaDNDHigh}

issuer = Canadian BCA1

subject = Canadian BCA2

certificatePolicies = {CanadaHigh}

permittedPolicies = {CanadaHigh}

DRAFT David A. Cooper May 14, 1999

- 3 - DRAFT

authority-constrained-policy-set will be {CanadaHigh, CanadaDNDHigh}. When processing the Canadian
BCA1 certificate, authority-constrained-policy-set will be set to the intersection of its current value and the
contents of the permittedPolicies extension, {CanadaHigh}. Since the US BCA included the
inhibitPolicyMapping extension and Canadian BCA2 did not include a permittedPolicies extension,
authority-constrained-policy-set will remain unchanged by the processing of the Canadian BCA2
certificate. When processing the certificate issued to John Doe, it will be determined that no member of
authority-constrained-policy-set appears in the certificatePolicies extension and so the certificate path will
be rejected.

A Solution

The problem in each of these cases was that the Canadian CAs issued certificates to other Canadian CAs
under the assumption that policy mapping was enabled. In reality, however, policy mapping was disabled
for US relying parties. The result is that US relying parties are unable to validate some Canadian
certificates even though the US BCA asserts that all Canadian certificate policies are permitted.

One solution to the policy mapping problem is to use the inhibitPolicyMapping extension to turn policy
mapping off on a CA-by-CA basis. Following this solution, there would be three constrained-policy sets for
the example above (four if the relying party’s initial-policy-set is taken into account).

In the example, the value of US-BCA-constrained-policy-set would initially be set to {CanadaHigh,
CanadaDNDHigh}. When processing the certificate issued by the Canadian BCA1 to the Canadian BCA2,
Canadian-BCA1-constrained-policy-set would be set to {CanadaHigh}. When processing the certificate
issued by Canadian BCA2 to Canadian DND, Canadian-BCA2-constrained-policy-set would be set to any-
policy.1 Since the US BCA included the inhibitPolicyMapping extension in its certificate, US-BCA-
constrained-policy-set would remain unchanged. However, CanadaDNDHigh would be added to
Canadian-BCA1-constrained-policy-set since the Canadian BCA1 did not include the
inhibitPolicyMapping extension in its certificate. When processing the certificate issued to John Doe, the
intersection of US-BCA-constrained-policy-set, Canadian-BCA1-constrained-policy-set, and Canadian-
BCA2-constrained-policy-set would be {CanadaHigh, CanadaDNDHigh}. Since the certificate issued to
John Doe asserts one of these policies in its certificatePolicies extension, the path will validate.

When processing the certificate issued to the Cuban BCA, the results would still be as desired. After
processing both the certificate issued by the US BCA and the certificate issued by the Canadian BCA1 to
the Cuban BCA, US-BCA-constrained-policy-set would be {CanadaHigh, CanadaDNDHigh} and
Canadian-BCA1-constrained-policy-set would be {CubaHigh}. Since the intersection of US-BCA-
constrained-policy-set and Canadian-BCA1-constrained-policy-set is the empty set, any certificates issued
by Cuba would be rejected by US relying parties.

A proposed set of certificate path processing rules that take into account the permittedPolicies extension
as well as the proposal for handling the inhibitPolicyMapping extension as described above is included
below.

Conclusion

The current processing rules may limit the types of certificate paths that can be processed. An examination
of business needs will be necessary to determine whether this is a feature or a bug.

1 This is only one option for setting a CAs constrained-policy-set value when the permittedPolicies
extension is not present. As is shown below other options are possible, but choosing a different value for
Canadian-BCA2-constrained-policy-set, as long as it contained CanadaDNDHigh, would not affect the
outcome of certificate policy processing in this example.

DRAFT David A. Cooper May 14, 1999

- 4 - DRAFT

12.4.2.3 Permitted Policies field

This field, which shall be used only in a CA-certificate, indicates the set of certificate policies under which
all subsequent certificates must be issued. This field is defined as follows:

permittedPolicies EXTENSION ::= {
SYNTAX permittedPoliciesSyntax
IDENTIFIED BY id-ce-permittedPolicies }

permittedPoliciesSyntax ::= SEQUENCE SIZE (1..MAX) of PolicyInformation

If this extension is present then all subsequent certificates that include a certificatePolicies extension must
include in that extension at least one of the policies specified in this extension.

This extension is always critical.

12.4.3 Certification path processing procedure

Certification path processing is carried out in a system which needs to use the public key of a remote end
entity, e.g., a system which is verifying a digital signature generated by a remote entity. The certificate
policies, basic constraints, name constraints, and policy constraints extensions have been designed to
facilitate automated, self-contained implementation of certification path processing logic.
Following is an outline of a procedure for validating certification paths. An implementation shall be
functionally equivalent to the external behavior resulting from this procedure. The algorithm used by a
particular implementation to derive the correct output(s) from the given inputs is not standardized.

The inputs to the certification path processing procedure are:

a) a set of certificates comprising a certification path;

b) a trusted public key value or key identifier (if the key is stored internally to the certification path
processing module), for use in verifying the first certificate in the certification path;

c) an initial-policy-set comprising one or more certificate policy identifiers, indicating that any one
of these policies would be acceptable to the certificate user for the purposes of certification path
processing; this input can also take the special value any-policy;

d) an initial-explicit-policy indicator value, which indicates if an acceptable policy identifier needs to
explicitly appear in the certificate policies extension field of all certificates in the path;

e) an initial-policy-mapping-inhibit indicator value, which indicates if policy mapping is forbidden
in the certification path; and

f) the current date/time (if not available internally to the certification path processing module).

The values of c), d), and e) will depend upon the policy requirements of the user-application combination
that needs to use the certified end-entity public key.

The outputs of the procedure are:

a) an indication of success or failure of certification path validation;

b) if validation failed, a diagnostic code indicating the reason for failure;

c) if validation was successful, a set of policies constrained by the CAs in the certification path under
which each certificate in the path may be used, together with all qualifiers for these policies, or the
special value any-policy. Unless any-policy is returned, the certificate user shall only use the
certificate in accordance with one of the identified policies and shall process all qualifiers for that
policy present in the certification path.

d) if validation was successful and c) returned the value any-policy, the set of all policy element
qualifiers encountered in the certification path.

e) details of any policy mapping that occurred in processing the certification path.

NOTE — If validation is successful, the certificate-using system may still choose not to use the
certificate as a result of values of policy qualifiers or other information in the certificate.

DRAFT David A. Cooper May 14, 1999

- 5 - DRAFT

The procedure makes use of the following set of state variables:

a) acceptable-policies[i]: The set of certificate policies under which the i-th certificate in the
certification path may be used;

b) constrained-policy-set[i]: A set of certificate policy identifiers comprising the set of policies
currently considered acceptable by the i-th certificate in the certification path; this state variable
can also take the special value any-policy;

c) permitted-subtrees: A set of subtree specifications defining subtrees within which all subject
names in subsequent certificates in the certification path must fall, or may take the special value
unbounded;

d) excluded-subtrees: A (possibly empty) set of subtree specifications (each comprising a subtree
base name and maximum and minimum level indicators) defining subtrees within which no
subject name in a subsequent certificate in the certification path may fall;

e) explicit-policy-indicator: Indicates if an acceptable policy needs to be explicitly identified in
every certificate;

f) policy-mapping-inhibit-indicator[i]: Indicates if policy mapping is inhibited by the i-th certificate
in the certificate path;

g) explicit-policy-pending-constraints: Details of explicit-policy constraints which have been
stipulated but are yet to take effect. There is a one-bit indictor called explicit-policy-pending along
with an integer called explicit-policy-skip-certificates which gives the number of certificates yet to
skip before the constraint takes effect;

h) policy-mapping-inhibit-pending-constraints[i]: Details of inhibit-policy constraints which have
been stipulated by the i-th certificate in the certificate path but are yet to take effect. There is a
one-bit indicator called policy-mapping-inhibit-pending[i] along with an integer called policy-
mapping-inhibit-skip-certificates[i] which gives the number of certificates yet to skip before the
constraint takes effect;

i) path-depth: An integer equal to the number of certificates in the certification path for which
processing has been completed.

The procedure involves an initialization step, followed by a series of certificate-processing steps. The
initialization step comprises:

a) Initialize constrained-policy-set[0] to the value of initial-policy-set;

b) Initialize the permitted-subtrees variable to unbounded;

d) Initialize the excluded-subtrees variable to an empty set;

e) Initialize the explicit-policy-indicator to the initial-explicit-policy value;

f) Initialize policy-mapping-inhibit-indicator[0] to the initial-policy-mapping-inhibit value;

g) Initialize the explicit-policy-pending and policy-mapping-inhibit-pending[0] indicators to unset;

h) Initialize path-depth to 0.

Each certificate is then processed in turn, starting with the certificate signed using the input trusted public
key. The last certificate is considered to be the end certificate; any other certificates are considered to be
intermediate certificates.

The following checks are applied to a certificate:

a) Check that the signature verifies, that dates are valid, that the certificate subject and certificate
issuer names chain correctly, and that the certificate has not been revoked.

b) For an intermediate certificate, if the basicConstraints extension is present in the certificate,
check that the cA component is present and set to true. If the pathLenConstraint component is
present, check that the current certification path does not violate that constraint.

c) If explicit-policy-indicator is set, check that the certificatePolicies extension is present.

DRAFT David A. Cooper May 14, 1999

- 6 - DRAFT

d) Compute the intersection of constrained-policy-set[0] … constrained-policy-set[path-depth] and
put the result as the value of acceptable-policies[path-depth+1]. Check that acceptable-
policies[path-depth+1] is non-empty.

e) If the certificatePolicies extension is present and the value in the extension is not anyPolicy ,
compute the intersection of the policies in that extension and acceptable-policies[path-depth+1]
and put the result as the new value of acceptable-policies[path-depth+1]. Check that acceptable-
policies[path-depth+1] is non-empty.

f) For each i between 0 and path-depth:
For each certificate policy in constrained-policy-set[i]:

— If the certificate policy is not anyPolicy , add any policy qualifiers attached to the policy
to the corresponding certificate policy in acceptable-policies[path-depth+1].

— If the certificate policy is anyPolicy , add any policy qualifiers attached to the policy to
each certificate policy in acceptable-policies[path-depth+1].

g) If the certificatePolicies extension is present and the value in the extension is not anyPolicy , add
any policy qualifiers from the certificatePolicies extension to the corresponding certificate policy
in acceptable-policies[path-depth+1].

h) If the certificatePolicies extension is present and the value in the extension is anyPolicy , add any
policy qualifiers from the certificatePolicies extension to each certificate policy in acceptable-
policies[path-depth+1].

i) Check that the subject name is within the name-space given by the value of permitted-subtrees
and is not within the name-space given by the value of excluded-subtrees.

If any of the above checks fails, the procedure terminates, returning a failure indication and an appropriate
reason code. If none of the above checks fails on the end certificate, the procedure terminates, returning a
success indication together with the set of policy identifiers from acceptable-policies, the required policy
element qualifiers, and details of any policy mapping that may have occurred.

For an intermediate certificate, the following constraint recording actions are then performed, in order to
correctly set up the state variables for the processing of the next certificate

a) If the nameConstraints extension with a permittedSubtrees component is present in the
certificate, set the permitted-subtrees state variable to the intersection of its previous value and the
value indicated in the certificate extension.

b) If the nameConstraints extension with an excludedSubtrees component is present in the
certificate, set the excluded-subtrees state variable to the union of its previous value and the value
indicated in the certificate extension.

c) If explicit-policy-indicator is not set:

— if the explicit-policy-pending indicator is set, decrement explicit-policy-skip-certificates and,
if this value becomes zero, set explicit-policy-indicator.

— If the requireExplicitPolicy constraint is present in the certificate perform the following. For
a SkipCerts value of 0, set explicit-policy-indicator. For any other SkipCerts value, set the
explicit-policy-pending indicator, and set explicit-policy-skip-certificates to the lesser of the
SkipCerts value and the previous explicit-policy-skip-certificates value (if the explicit-policy-
pending indicator was already set).

d) For each i between 0 and path-depth:

If policy-mapping-inhibit-indicator[i] is not set:

— process any policy mapping extension with respect to policies in the constrained-
policy-set[i] and add the appropriate policy identifiers to constrained-policy-set[i].

— if the policy-mapping-inhibit-pending[i] indicator is set, decrement policy-mapping-
inhibit-skip-certificates[i] and, if this value becomes zero, set the policy-mapping-
inhibit-indicator[i].

DRAFT David A. Cooper May 14, 1999

- 7 - DRAFT

e) Increment path-depth.

f) If the permittedPolicies extension is present in the certificate, set constrained-policy-set[path-
depth] to the policies in that extension. Add any policy qualifiers from the permittedPolicies
extension to the corresponding certificate policy in constrained-policy-set[path-depth].

g) If the permittedPolicies extension is not present in the certificate, [see note on Step g below].

h) If the inhibitPolicyMapping constraint is present in the certificate, perform the following. For a
SkipCerts value of 0, set policy-mapping-inhibit-indicator[path-depth]. For any other SkipCerts
value, set the policy-mapping-inhibit-pending[path-depth] indicator, and set policy-mapping-
inhibit-skip-certificates[path-depth] to the value in SkipCerts .

Note on Step g:

Step g above specifies the value for constrained-policy-set[path-depth] when the permittedPolicies
extension is not present in the certificate. Since a CA can set constrained-policy-set[path-depth] any way it
wishes by using the permittedPolicies extension, step g can be anything. So, the only limitation in
assigning a rule for step g is that it should be sensible. Below are three possibilities:

Option 1: If the permittedPolicies extension is not present in the certificate, set constrained-policy-
set[path-depth] to any-policy.

Commentary: This is rule that Sarbari Gupta proposed in her presentation (see
http://csrc.nist.gov/pki/twg/presentations/twg-99-32.pdf). This would be the preferred option if most
CAs do not wish to limit the policies that can be used by CAs to which they issue certificates. It also
seems to be the most intuitive and thus the option most likely to be understood by PKI users.

Option 2: If the permittedPolicies extension is not present but the certificatePolicies extension is
present, set constrained-policy-set[path-depth] to the policies in the certificatePolicies
extension. Add any policy qualifiers from the certificatePolicies extension to the
corresponding certificate policy in constrained-policy-set[path-depth]. Process any policy
mapping extension with respect to constrained-policy-set[path-depth] and add the appropriate
policy identifiers to constrained-policy-set[path-depth].

If neither the permittedPolicies extension nor the certificatePolicies extension is present in
the certificate, set constrained-policy-set[path-depth] to any-policy.

Commentary: Option 2 is the closest to the current version of the certificate policy processing rules,
but given the current thinking on certificate policy processing, this may not be the best option.

Option 3: If the permittedPolicies extension is not present but the certificatePolicies extension is
present, set constrained-policy-set[path-depth] to the policies in the certificatePolicies
extension. Add any policy qualifiers from the certificatePolicies extension to the
corresponding certificate policy in constrained-policy-set[path-depth]. Process any policy
mapping extension with respect to constrained-policy-set[path-depth] by:

1. For each policy mapping in which the issuerDomainPolicy is in constrained-policy-
set[path-depth] add the corresponding subjectDomainPolicy to constrained-policy-
set[path-depth].

2. Remove from constrained-policy-set[path-depth] any policy which appears as an
issuerDomainPolicy in one of the policy mappings.

If neither the permittedPolicies extension nor the certificatePolicies extension is present in
the certificate, set constrained-policy-set[path-depth] to any-policy.

DRAFT David A. Cooper May 14, 1999

- 8 - DRAFT

Commentary: The wording of this option needs work, but the idea is to be the same as option 2 with
the exception that policy mapping causes that substitution of certificate policies instead of the
accumulation of certificate policies. Option 3 is designed to match as closely as possible with the
certificate policy processing proposal of Santosh Chokhani, Serge Mister, and Tim Moses (see
http://csrc.nist.gov/pki/twg/presentations/twg-99-31.pdf). If most CAs wish to limit the set of
acceptable policies to those listed in the certificatePolicies extension as modified by the
policyMapping extension, then this may be the option that minimizes the number of certificates that
will need to include the permittedPolicies extension.

